The creation of online teaching material as a crisis solution

In an effort to complete the 2016 academic year, the University of Cape Town leadership have called upon the body of lecturers to make use of online and blended teaching material.  The University, as others in the country, are reopening their doors under difficult circumstances.  These relate to continued protest action and the absence of consensus amongst students and staff on the if-and-how of reopening the University.  With classroom attendance expected to be poor or even unwarranted, the problem of providing didactic learning had to be addressed.  The solution, online learning.  A simple call to put recordings of lectures online and to incorporate already existing web-based material.

I am well familiar with this concept.  With more than 1,000 lectures on YouTube, two courses on the massive open online course (MOOC) platform Coursera® (here & here), and an international award in open education from the Open Education Consortium, I am sold on the concept of freeing knowledge from its academic confines.  Knowledge through education is power.  The access to it is a fundamental right and it should not be a commodity.  There can be no better tool to uplift a population, than through proper education.

So now, UCT wants to embrace online education as an instant solution to save the academic year.  So why, after pouring so much energy into the creation of online educational resources, am I not elated, ecstatic, vindicated?  To be honest, I do experience these feelings.  It is, however, mixed with feelings of trepidation, anxiety, and even frustration.

Frustrated, because my plea for the large scale creation of online resources have fallen on deaf ears.  We need only look at the efforts of leading Universities such as the Massachusetts Institute of Technology, Stanford, Harvard and many others that have embraced the online space in their educational efforts.  Not only to the benefit of their local students, but the world at large.  UCT should have been creating these resources at scale a long time ago.

We have to take cognizance of the fact that the efforts of leading Universities took years to develop.  Built with the input of experienced staff and stakeholders.  Experts who know that simply transforming face-to-face teaching or printed material into video and electronic format does not constitute education.  The problem cannot be solved with a purely cognitivist approach and most certainly, not overnight.

There are many problems inherent in the call for the rapid production of online course material.   One glaring example is the lack of formative and summative assessment.  The face-to-face method of providing learning material (lectures), asking a few unstructured questions during lecturing and sitting back in judgement during tests and exams is already a suboptimal approach to education.  When replacing this flawed concept with unstructured online teaching, the outcome must certainly be viewed with concern.  To develop a proper educational resource takes time, effort, experience, research, and most importantly, engagement and consultation with students.  Watch this video from smaccDUB on how students can choreograph their own education.

The call to make online resources available must be supported.  We need to do so in a measured and structured manner, though.  To the University’s credit the Dean of the Health Sciences Faculty has called for the creation of a technology in education committee.  The Centre for Innovation in Learning and Teaching have published an excellent guide to the creation of online educational resources.  Furthermore, they provide individual consultations and hold regular workshops.  Hopefully we can use this opportunity to align our efforts with those of the leading Universities in the world.

Julia for scientific computing, my second Coursera MOOC

October 2016 has seen the launch of my second course on the Coursera massive open online course (MOOC) platform.  Whereas my first course dealt with the statistics used in healthcare research, this one teaches the new Julia language for scientific computing.  You can find it here.

As with other Coursera offerings, you can pay a nominal fee to get a verified certificate from the University of Cape Town, else you can audit the course for free.  Remember, though, that it is always possible to state that you do not have the financial resources to pay for the verified certificate and Coursera will waive the fee and you will still get your certificate.

You can also learn more about Julia from their home page.  Let me know what you think.

Before I forget, the Jupyter notebooks for the course are available on GitHub.


Julia logo

Calculus in the plane

Just to show off what Jupyter notebooks can do, this post will render part 1 of lesson 1 of my lecture series on complex variables. Have a look.

My Coursera MOOC now live!

UCR_MOOCAfter many months of preparation, my massive open online course (MOOC) on healthcare statistics has gone live on Coursera today, December 01, 2015.  To sign up follow this link: Coursera.

This course build an intuitive understanding of statistics, without the use of complicated mathematical equations.  Everything from descriptive statistics to hypothesis testing, confidence intervals, p-values, Student’s t-test, chi-square tests and many more are explained.

On completion of this course you should feel confident in properly evaluating the published literature or even embark on your own research.

Our road to patient-centred, competency-based education

So, how can an academic surgical unit benefit from the computer code development skills of people such as Wes McKinney of pandas fame or the educational skills of an engineering professor such as Lorena Barba of Numerical MOOC (numerical massive open online course) fame? Answer: A lot. This post is about our efforts to transition from antiquated to more modern forms of surgical training and assessment, all with the help of the one of the best software projects out there, Project Jupyter. This is Groote Schuur after all!

The teaching and assessment paradigm has stood for many, many decades. Do four years of surgical rotations, watch what your superiors do, present on ward rounds, go to the clinic, take calls, assist in theatre, do some cases, attend (most) academic meetings (read: watch yet another PowerPoint presentation), pass three exams. Presto. Specialist. That’s how its done now, that how is was done in the 00’s, the 1990’s, 80’s, 70’s, 60’s, 50’s, 40’s,… You get the point. Hey, depending on which source you read, it was in the the 40’s that the overhead projector was first used by the military in World War II. If you think about it, an overhead transparency projector is just PowerPoint without a computer. If you slipped in one transparency while the other is still showing, it;s just like a slide transition!

Depending on your working environment, you might be surrounded by people in full support of this form of education. It has always worked that way. Why change now? Well, as the argument goes, by that logic bloodletting should still be all the rage. You will note that in contrast to medical education, actual medicine has come on in leaps and bounds. We buy into the new paradigm that is evidence-based medicine. So why is it so difficult to accept and, even more difficult, to practice evidence based medical education?

Some of us are fortunate enough to work in countries where there are national efforts and frameworks in place to motivate for change. Have a look at the CanMEDS program in Canada. Two of the key concepts in their program are patient-centred care and competency-based assessment. Without going into the detail of their programs, I want to concentrate on these two aspects. Reason being, it gives us a practical starting point. For those unfortunate enough not to work in countries with national frameworks and support, small steps have to be taken.

So what solutions have we implemented in the Acute Care Surgery Unit at Groote Schuur Hospital? First and foremost, involve the patients. They are at the centre of what we do after all. Why should they have no say in the evaluation of their care? Fortunately, validated tools are available when you turn to the literature. At this time we use the Jefferson scale of patient’s perception of physician empathy. Moving on to competency assessment, there is the Ward Round Assessment tool amongst many others. Point being, we are moving away from the 20-second, mark either average or above average on the end-of-rotation subjective question scorecard. You know the one: (1) Knowledge, (2) Surgical skill, (3) Punctuality…

Now, the Acute Care Surgery Unit is brand new (you can learn more about us from my talk at this year’s Association of Surgeons of South Africa conference here). We certainly have no research assistants, money, or personnel to help us in our efforts towards patient-centred, competency-based education. This whole process has to be self-driven. Solutions to the problem? Well, that’s the easy bit. The World has changed over the last few years. No longer is knowledge locked away behind expensive paywalls. If you want to learn something, go online. For me, it all started with the Massachusetts Institute of Technology (MIT). Their open courseware opened a whole new world to me. MIT and the massive open online course platforms such as Coursera (to which I will shortly contribute), EdX and FutureLearn (to name but a few) are handing the keys of knowledge to all humankind.

This brings me to Project Jupyter and computer languages such as IPython and Julia. If you have no access to software development teams and big budget research units, do yourself a favor, search for tutorials on these projects. You will find so many wonderful men and women, going out of their way to empower you with these tools. Even a lowly surgeon such as myself have online tutorials. Have a look at these:
The Klopper Lectures on Julia
Mini project: Medical research using Julia

Back to what this post is all about.  Here, you will find a link to some of our results using Project Jupiter (Github). To protect patients and trainees, the data have been altered and are not a true reflection of anyone or any given period. What it does show, though, is how easy it is to use data to properly guide the training of our residents; and this is just our first small step.

The Julia programming language

So, I’ve started a new playlist on my YouTube® channel called The Julia Computer Language.  For now, lessons 1 and 2 are up and as (limited) time allows, I’ll add some more.

Julia is a rather new programming language for technical or scientific computing.  You will find out a lot more about it on the Julia homepage.  Unfortunately, there is not a lot of tutorials on Julia out there and if you do find them, most are by computer scientist for computer scientists.  Perhaps rightly so, as Julia is a fantastic tool, capable of some pretty impressive things when it comes to scientific computing.  It prides itself on being as simple and easy to use as Python, with speeds approaching that of C or Fortran.  It is indeed much speedier than other mathematical languages such as Matlab® and Mathematica®.

On top of this, I believe that it makes for an excellent language for a novice starting off, learning how to code.  This is especially true for those who plan to go into the fields of science and technology.  Even if you move on to other languages, Julia will stand you in good stead.  It might spoil you, though, which means you’ll come running straight back to it.

I do stick to IPython for my medical statistics, but Julia works perfectly here too.  I’ve made a lecture on the topic, which you can view here.

Go on, give Julia a spin.  There is just something about it that speaks to me.  A certain elegance and power.  Well done to the brilliant minds that came up with it and to all those who are continuing its development.

You can write Julia code in the cloud using JuliaBox, so no need to install anything at all.  At this time, I am having tremendous problems getting it (IJulia) to run in Jupyter, so much so that I am using the very nice Juno development environment.  In upcoming lessons I will look at installing Julia, Jupyter, and Juno, but for now, you can follow along without any downloads or installs.  Just use JuliaBox and your Google® account to sign in.  The notebook files that I use are in a zip file on this page.

Review of research paper on medical education

A brief report was publish in the Canadian Medical Education Journal titled Re-thinking clinical research training in residency. The authors were struggling with the same questions we have in our department. Perhaps the two most important points relate to the need for specialists to critically appraise research and to fulfil accreditation requirements.
In medicine we have well and truly departed from the era of eminence-based medicine. It is of utmost importance for specialist to be able to evaluate research evidence to inform their practice. This requirement extends well beyond simply browsing the introduction and conclusion sections in abstracts.
Furthermore, it has become necessary for postgraduate trainees in South Africa to complete a mini-dissertation towards a Masters degree in order to qualify to sit the final Colleges of Medicine exams.
The authors then asks three questions. Firstly, is mandating original research the answer? Secondly, what ought to be the central purpose of research training? Lastly, what are the alternatives to original clinical research? They quite correctly point out that there is much more to the development of a clinician-scientist than research training and bring up the necessity to focus trainee research on local patient needs as opposed the emphasis on conducting original research.
The main section of the paper attempts to answer the three question mentioned above. I’ll leave you to read the authors’ response to their first question, most of the suggested programs in aid of producing clinician-scientists are not available in this country.
On the question of the central purpose of research training, the authors focus on the (in my opinion) commendable CANMEDS initiative of placing the patient at the centre of medical education. It might be true that there exists tremendous personal fulfilment in a career in medicine, but by its nature, it is a pursuit aimed at helping patients and not a pursuit of personal gain. As in the South African academic setting, education takes place in institutions that are publicly funded and the authors express the opinion that time, effort, and resources in research education be spent on producing work aimed squarely at direct benefit to the local patient population, as opposed to original research.
As to the alternatives to original clinical research the authors once again explore pathways which they feel might benefit the patient more. They argue for the formation of teams by PhD-trained researches and feel that trainees are in a much better position to come up with relevant clinical questions which should lead to projects managed by these teams. They feel that trainees could learn much more about research in such groups.
Lastly, they raise the important issue of time available for research during training. Their situation certainly mimics our constrained environment, where it is almost impossible to release trainees for sustained periods during which they do not provide service delivery.
Certainly some food for though. Alas, it is my humble opinion that the Canadian Medical Education System, through CANMEDS, far exceeds our local effort. At this time, our dire need lies in establishing proper education in conducting research and statistical analysis. No formal education exists in this regard.

Irritating problems in medical education

This is a bird’s eye view of the most irritating problems in my opinion.  There are certainly much bigger and important issues, but these just get me down!

They are nothing new, but the more they are mentioned, the better.  My biggest peeve?  The use of PowerPoint® or other presentations.

Now, I have nothing against PowerPoint® or Keynote®, or Prezi®, or any of these presentation tools. They are all fantastic pieces of modern software and serve a definite purpose. What really gets me down, though, is how they continue to be the standard tools of medical education.

You know the deal: Clinical educator meets students in locale and time. Students whip out paper and pencil and feverishly try and make notes, whilst also keeping an eye on that social media icon on their phones; the educator standing up front, the proud owner of 36 text-packed slides.  Now, I’m not even going to mention the relevance of the content.  That’s a post for another day.

Listen up: it is not the pinnacle of teaching when your PowerPoint® slides have transitions in them.  Delivering it, even with aplomb, and walking off, is not a measure of good education. We all know by now that students’ memory of facts given during presentations rapidly decline with time. I am sure that the only slightly long-term memorized fact that students get from us when they attend a presentation-style lecture, is what we look and sound like.

As if that isn’t bad enough, what happens next to these poor students always astonishes me. We sit back in an exam and play judge, jury, and executioner regarding their knowledge.

Where is our duty between pitching up with our presentation slides and that exam? When did we bother to find out if they really knew what was going on?  In-between slides?

Saddest part?  We know how to do better.  The literature is rich in research. Read up.

Long live PowerPoint®!

Open Courseware 2014 Conference

The main conference hall at the OCW conferene in Ljubljana

The main conference hall at the OCW conferene in Ljubljana

I am in lovely Ljubljana, capital of the small  country of Slovenia, for the 2014 Open Coursware Global Conference.  The development of open edcational resources is here to stay and it is interesting to hear and see how various universities have implemented the vision of openess!

The conference kicked off with a top-down view as seen by die European Commission and the Slovenian government.  It all starts with awareness and especially with awareness of the benefits.

Must say, with some sadness, that medicine is lagging behind the mainstream STEM fields.  Most certainly, the M is for mathematics and not medicine.  Looking forward, though, to a talk about the use of the flipped classroom from the Taipei Medical University.  Perhaps I’ll corner them for some collaborative research, since my classes are all flipped.

OCW Consortium 2014 Award

OCW logo



I’m honoured  to announce that I have been awarded the Open CourseWare Consortium 2014 Award for the category Individual Educator for my work on open education.

Previous award winner, Walter Lewin, Physicist at MIT, has been an inspiration and hero of mine and to be a recipient of the same award, is a truly humbling experience for me.